

Maths - No Problem!

Calculation Guidelines 2021

Textbooks and workbooks

Making Number Bonds

Number Bonds

Chapter 2

Name: \qquad Class: \qquad Date: \qquad

Worksheet 1

Making Number Bonds
(1) Complete the number bonds. Fill in the blanks.
(a)

\square and \square make 5 .
(b)

This is a number bond.
Number Bonds Page 26

Number Bonds

\qquad
In Singapore mathematics number bonds refer to how numbers can be combined or splitup, the 'part-part-whole'
 relationship of numbers.

When talking about number bonds in Singapore maths we are referring to how numbers join together and how they can be split up. A lot of emphasis is put into number bonds from the early year foundation stagesso that children can build up their number sense prior to learning addition and subtraction. In the early stages students should be introduced to number bonds with concrete experiences. For example, children could be given 6 linking cubes and guided to understand that 2 and 4 make 6 , but that 1 and 5 also make 6 .

The mastery of number bonds is an important foundation required in subsequent mathematical learning and as a basis in the development of mental strategies. A strong number sense allows students to decide what action to take when tryingto solve problems in their head.

An example of how a pupil would use number sense gained from numberbonds to perform a mental calculation:
$23+45=?$

Add the tens: $20+40=60$
Add the ones: $4+5=8$
Answer

Concrete-Pictorial-Abstract approach

One of the key learning principles behind the Singapore maths textbooks is the concrete-pictorial-abstract approach, often referred to as the CPA approach.

The concrete-pictorial-abstract approach, based on research by psychologist Jerome Bruner, suggests that there are three steps (or representations) necessary for pupils to develop understanding of a concept. Reinforcement is achieved by going back and forthbetween these representations.

Concrete representation

The active stage - a student is first introduced to an idea or a skill by acting it out with real objects. In division, for example, this might be done by separating apples into groups of red ones and green ones or by sharing 12 biscuits amongst 6 children. This is a'hands on' component using real objects and it is the foundation for conceptual understanding.

Pictorial representation

The iconic stage - a student has sufficiently understood the hands-on experiences performed and can now relate them to representations, such as a diagram or picture of the problem. In the case of a division exercise this could be the action of circlingobjects.

Abstract representation

The symbolic stage - a student is now capable of representing problems by using mathematical notation, for example: $12 \div 2=6$ this is the ultimate mode, for it is clearly the most mysterious of the three.

Progression in Calculations

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the bigger number on the number line and counton in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
	Belonging Diversit	Active Independence	

Regrouping to
make 10.
Adding three
single digits

Column method- no regrouping	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +42 \end{array}$
Column methodregrouping	Make both numbers on a place value grid. Add up the units and exchange 10 onesfor one 10. Add up the rest of the columns,	Children can draw a pictorial representation of the columns and place value counters to further support theirlearning and understanding.	Start by partitioning the numbers before moving onto clearly show the exchange below the addition. $\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13=73 \\ & 536 \\ & \frac{+85}{\frac{621}{11}} \end{aligned}$ As the children move on, introduce decimals with the same number of decimal places and different. Money can be

Subtraction

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubesetc to show how objects can be takenaway. $6-2=4$	Cross out drawn objects to show what has been taken away. $15-3=12$	$18-3=15$ $8-2=6$
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13-4 Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the larger number and count back to the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Find the difference	Compare amounts and objects to findthe difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Lisa is 13 years old. Her sister is 22 years old Find the difference in age between them. Draw bars to find the difference between 2 numbers.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference betweenthe number of sandwiches.
Part Whole Model	Link to addition - use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part whole model.	5 10 Move to using numbers within the part whole model.

Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of9.	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer. Children should count below the number line	$16-8=$ How many do we take off to reach the next 10 ? How many do we have leftto take off?
Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again, make the larger number first.		$\begin{gathered} 47-24=23 \\ -40+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.

Column method with regrouping	Use Base 10 to start with before movingon to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange oneof my tens for ten ones. Now I can subtract my ones. Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.	When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.			Children can start their formal written method by partitioning the number into clear place value columns. $\begin{array}{ccc} 728 & -582=146 \\ { }^{\prime \prime} & 1 & 0 \\ 77 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$ Moving forward the children use a more compact method. This will lead to an understanding of subtracting any number including decimals.
Belonging Diversity		Active Indep			

Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number. double 4 is 3 $4 \times 2=8$	Draw pictures to show how to double a number. Double 4 is 8 \square \square \square \square \square \square \square \square	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$

Repeated addition		There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotationsto find commutative multiplication sentences.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can youshare them equally in 2 groups?	Children use pictures or shapes to share quantities.	Share 9 buns between three people. $9 \div 3=3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or placevalue counters to aid understanding.	Use a number line to show jumps in groups. The numberof jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. \square $20 \div 5=$? $5 \times ?=20$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Division within	
arrays	
Link division to multiplicationby creating an	
array andthinking about the	
number sentences that can be created.	
Eg $15 \div 3=5$	$5 \times 3=15$
$15 \div 5=3$	

| Division with a
 remainder | $14 \div 3=$
 Divide objects between groups and
 see how much is left over | Jump forward in equal jumps on a number line then seehow
 many more you need to jump to find a remainder. |
| :--- | :--- | :--- | :--- |
| and show written divisions | | |
| using r. | | |

Short and long division	 Use place value counters to divide using the bus stop method alongside. value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones andthen share the ones equally among thegroups. We look how much in 1 group, so the answer is 14 .	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. $\begin{array}{rllll} & 8 & 6 & r & 2 \\ \hline & & 3 & & \end{array}$ Finally move into decimal places to divide the total accurately. Children will be taught long division in year 6 . They will use the same principles for concrete and pictorial division methods but the written method will be written down and worked out as follows:
	Belonging Diversity	Active Indepe	ence

